Tanggapan Fisiologis dan Agronomis Kacang Tanah (Arachis hypogaea L.) terhadap Cekaman Kekeringan
Main Article Content
Abstract
Peanut is one of the potential food sources which is the second most important secondary crop after soybeans in Indonesia. However, the productivity of peanuts at the farm level is relatively low, mainly due to environmental stress conditions in the form of drought. In general, water shortage is the main limiting factor for plant growth and productivity. These conditions result in changes at the molecular, physiological, and morphological levels. The treatment in this study consisted of land with enough water and land with less water. The treatment begins when the plant enters the generative phase. In areas with sufficient air, watering is carried out every day until it reaches field capacity. On land where watering is less done once a week. The variables observed include soil water content, physiological characteristics, including proline content, and agronomic characters of peanut, including plant height, number of leaves, fresh and dry weight of shoots and roots, leaf area, root volume, root length, number of roots, fresh weight of the pods and fresh weight of the seeds. In addition, variables of crop growth analysis were also observed which included light interception, LAI, CGR, NAR, and SLW. The result showed that drought stress were increased proline content and inhibited the growth of peanut. The indicators of inhibitation of peanut growth were shorter of root length, smaller root volume, less number of roots, lighter fresh and dry weight of roots, lighter dry weight of shoots, and less number of leaves.
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Dewi, S. M., Yuwariah, Y., Qosim, W. A., & Ruswandi, D. (2019). Pengaruh cekaman kekeringan terhadap hasil dan sensitivitas tiga genotip jewawut. J. Produksi Tanam., 18(3), 355–363.
Clifford, S. C., Stronach, I. M., Mohamed, A. D., Azam-ali, S. N., & Crout, N. M. J. (1993). The effects of elevated atmospheric carbon dioxide and water stress on ligth interception, dry matter production, and yield in stands of groundnut (Arachis hypogaea L.). J. Exp. Bot., vol. 44(269), 1763–1770. http://doi.org/10.1093/jxb/44.12.1763
Fauzi, W. R. & Putra, E. T. S. (2019). Dampak pemberian kalium dan cekaman kekeringan terhadap serapan hara dan produksi biomassa bibit kelapa sawit (Elaeis gueenensis Jacq.). J. Penelit. Kelapa Sawit, 27(1), 41–56.
Ibarra-Caballero, J., Villanueva-Verduzco, C., Molina-Galán, J., & Sánchez-de-Jiménez, D. (1988). Proline accumulation as a symptom of drought stress in maize: A tissue differentiation requirement. J. Exp. Bot., 39(204), 889–897. http://doi.org/10.1093/jxb/39.7.889.
Levitt, J. (1980). Responses of plants to environmental stress. New York: Academic Press.
Maryani, A. T. & Gusmawartati, G. (2010). Pengaruh volume pemberian air terhadap pertumbuhan bibit kelapa sawit (Elaeis guineensis Jacq .) di pembibitan utama. J. Agroteknologi, 1(1), 8–13. http://doi.org/10.24014/ja.v1i1.16
Mastur, M. (2016). Respon fisiologis tanaman tebu terhadap kekeringan. Bul. Tanam. Tembakau, Serat Miny. Ind., 8(2), 99–111. https://doi.org/10.21082/btsm.v8n2.2016.99-112.
Mei, M., Siaga, E., & Lakitan, B. (2023). Perubahan morfofisiologis tanaman terung pada kondisi muka air tanah dangkal dan tergenang di fase generatif. Jurnal Ilmu Pertanian Indonesia, 28(2), 235–243. https://doi.org/10.18343/jipi.28.2.235.
Ningsih, M. S., Susilo, E., Rahmadina, R., Qolby, F. H., Tanjung, D. D., Anis, U., Susila, E. N., Panggabean,N. H., Priyadi, S., Nasution, J., Sari, N. Y., Baharuddin, R., & Wisnubroto, M. P. (2024). Dasar-dasar fisiologi tumbuhan. Padang: CV Hei Publishing Indonesia.
Özalkan, Ç., Sepeto?lu, H. T., Daur, I., & ?en, O. F. (2010). Relationship between some plant growth parameters and grain yield of chickpea (Cicer arietinum L.) during different growth stages. Turkish J. F. Crop., 15(1), 79–83.
Pratiwi, H. (2011). Pengaruh kekeringan pada berbagai fase tumbuh kacang tanah. Bul. Palawija, 22, 71–78. https://doi.org/10.21082/bul palawija.v0n22.2011.p%p.
Riduan, A., Aswidinnoor, H., Koswara, J., & Sudarsono, S. (2005). Toleransi sejumlah kultivar kacang tanah terhadap cekaman kekeringan. HAYATI J. Biosci., 12(1), 28–34.
Setiawan, S., Tohari, T., & Shiddieq, D. (2012). Pengaruh cekaman kekeringan terhadap akumulasi prolin tanaman nilam (Pogostemon cablin Benth.). Ilmu Pertan., 15(2), 85–99.
Sharp, R. E., Poroyko, V., Hejlek, L. G., Spollen, W. G., Springer, G. K., Bohnert, H. J., & Nguyen, H. T. (2004). Root growth maintenance during water deficits: Physiology to functional genomics. J. Exp. Bot., 55(407), 2343–2351. https://doi.org/10.1093/jxb/erh276.
Shavrukov, Y., Kurishbayev, A., Jatayev, S., Shvidchenko, V., Zotova, L., Koekemoer, F., de Groot, S., Soole, K., Langridge, P. (2017). Early flowering as a drought escape mechanism in plants: How can it aid wheat production?. Front. Plant Sci., vol. 8(1950), 1–8. https://doi.org/10.3389/fpls.2017.01950.
Sukma, K. P. W. (2015). Mekanisme tumbuhan menghadapi kekeringan. J. Pemikir. Penelit. Pendidik. dan Sains, 3(6), 186–194. https://doi.org/10.31102/wacanadidaktika.3.2.186-194.
Taiz, L. & Zeiger, E. (2010). Plant Physiology. Sunderland: Sinauer Associates.